Section 2.7 answers to some of the proposed exercises
Subsection 2.7.1
Anwer to Subsection 2.6.4. Listing 2.7.1. It is noted that, as usual, the previous instructions are not the only possible way to obtain the required result.
$ sig = @(x) ...
[5*x(2)*x(3) 3*x(2)^2 0;
3*x(2)^2 0 -x(1);
0 -x(1) 0];
n = @(x) ...
[2*x(1)/sqrt((2*x(1))^2+(2*x(2))^2+1);
2*x(2)/sqrt((2*x(1))^2+(2*x(2))^2+1);
1/sqrt((2*x(1))^2+(2*x(2))^2+1)];
t = sig([1/2; sqrt(3)/2; -1])*n([1/2; sqrt(3)/2; -1])
Subsection 2.7.2
Answer to Subsection 2.6.9. Listing 2.7.2.
$ x = sym('x', [3 1], 'real');
syms rho g real
sig = [x(2) x(3) 0;
x(3) x(1) 0;
0 0 rho*g*x(3)];
b = [0; 0; -rho*g];
% 1st question
divergence(sig(1,1:3), x) + b(1)
divergence(sig(2,1:3), x) + b(2)
divergence(sig(3,1:3), x) + b(3)
% 2nd question
t1 = subs(sig, x(1), 1)*[1; 0; 0]
t2 = subs(sig, x(2), 1)*[0; 1; 0]
t3 = subs(sig, x(3), 1)*[0; 0; 1]
t1_ = subs(sig, x(1), 0)*[-1; 0; 0]
t2_ = subs(sig, x(2), 0)*[0; -1; 0]
t3_ = subs(sig, x(3), 0)*[0; 0; -1]
% 3th question
T1 = int(int(t1, x(2), 0, 1), x(3), 0, 1)
T2 = int(int(t2, x(1), 0, 1), x(3), 0, 1)
T3 = int(int(t3, x(1), 0, 1), x(2), 0, 1)
T1_ = int(int(t1_, x(2), 0, 1), x(3), 0, 1)
T2_ = int(int(t2_, x(1), 0, 1), x(3), 0, 1)
T3_ = int(int(t3_, x(1), 0, 1), x(2), 0, 1)
B = int(int(int(b, x(1), 0, 1), x(2), 0, 1), x(3), 0, 1)
R = T1 + T2 + T3 + T1_ + T2_ + T3_ + B
