The application of Eq.
(2.2.3) assuming as subdomain
\(\omega\) the Cauchy tetrahedron illustrated in the previous video provides
\begin{equation*}
\int_{\omega_{\delta}} \func{\vec{b}}{\vec{x}} \, dv + \int_{\partial\omega_{\delta}} \func{\vec{t}}{\vec{x}, \vec{n}} \, ds = \vec0\,.
\end{equation*}
It has already been observed that when \(\delta \to 0 \) the volume measurement \(\omega_{\delta} \) tends to zero much faster than the surface measurement \(\partial\omega_{\delta}\text{.}\) Moreover \(\partial\omega_{\delta} = \Gamma_{\delta}\cup\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}\text{,}\) then previous equation becomes
\begin{equation*}
\int_{\Gamma_{\delta}} \func{\vec{t}}{\vec{x}, \vec{n}} \, ds + \int_{\Gamma_{1}} \func{\vec{t}}{\vec{x}, -\vec{e}_1} \, ds + \int_{\Gamma_{2}} \func{\vec{t}}{\vec{x}, -\vec{e}_2} \, ds + \int_{\Gamma_{3}} \func{\vec{t}}{\vec{x}, -\vec{e}_3} \, ds = \vec0\,.
\end{equation*}
Taking into account the geometric relationship of face \(\Gamma_{\delta}\) with each face \(\Gamma_{1}\text{,}\) \(\Gamma_{2}\) and \(\Gamma_{3}\text{,}\) it can be obtained what follows
\begin{equation*}
\func{\vec{t}}{\vec{x}, \vec{n}}\,\Gamma_{\delta} + \func{\vec{t}}{\vec{x}, -\vec{e}_1} \,\Gamma_{\delta}\,n_1 + \func{\vec{t}}{\vec{x}, -\vec{e}_2} \,\Gamma_{\delta}\,n_2 + \func{\vec{t}}{\vec{x}, -\vec{e}_3} \,\Gamma_{\delta}\,n_3 = \vec0\,,
\end{equation*}
and finally
\begin{equation}
\func{\vec{t}}{\vec{x}, \vec{n}} = - \func{\vec{t}}{\vec{x}, -\vec{e}_1} \,n_1 - \func{\vec{t}}{\vec{x}, -\vec{e}_2} \,n_2 - \func{\vec{t}}{\vec{x}, -\vec{e}_3} \,n_3 \,.\tag{2.3.2}
\end{equation}