Let us evaluate the scalar product between Eq.
(2.3.10) and a generic vector field
\(\vec{v}\) and let us integrate the result over the assigned body
\(\body\) (for continuity, this operation could be carried out on any subset of
\(\body\)). Because Eq.
(2.3.10) must to be satisfied in each
\(\vec{x}\) of
\(\body\text{,}\) then
\begin{equation}
\int_{\body} \left( \text{div}\tens{\sigma} + \vec{b} \right) \cdot \vec{v} \,dv = 0\,,\quad \forall\vec{v}\,,\tag{2.5.1}
\end{equation}
where \(\vec{v} \) is a continuous and differentiable vector field defined on the body \(\body\text{.}\) As already shown in the previous video about divergence it is possible to write
\begin{equation*}
\text{div}\left(\tens{\sigma}\vec{v}\right) = \text{div}\tens{\sigma} \cdot \vec{v} + \tens{\sigma} : \tens{\nabla v}\,,
\end{equation*}
from which
\begin{equation*}
\text{div}\tens{\sigma} \cdot \vec{v} = \text{div}\left(\tens{\sigma}\vec{v}\right) - \tens{\sigma} : \tens{\nabla v} \,.
\end{equation*}
Now the starting integral equation can be rewritten as follows
\begin{equation}
\int_{\body} \left(\text{div}\left(\tens{\sigma}\vec{v}\right) - \tens{\sigma} : \tens{\nabla v} + \vec{b} \cdot \vec{v} \right) \,dv= 0\,,\quad \forall\vec{v}\,.\tag{2.5.3}
\end{equation}
The first integral, by applying the divergence theorem and the Cauchy stress tensor theorem, can be written also as
\begin{equation*}
\int_{\body} \text{div}\left(\tens{\sigma}\vec{v}\right)\, dv =
\int_{\partial\body} \tens{\sigma}\vec{v} \cdot \vec{n}\,ds =
\int_{\partial\body} \vec{v} \cdot \tens{\sigma}\vec{n}\,ds =
\int_{\partial\body} \vec{t} \cdot \vec{v}\,ds \,.
\end{equation*}
\begin{equation}
\int_{\partial\body} \vec{t} \cdot \vec{v}\,ds - \int_{\body} \tens{\sigma} : \tens{\nabla v}\,dv + \int_{\body} \vec{b} \cdot \vec{v} \,dv = 0\,,\quad \forall\vec{v}\,.\tag{2.5.4}
\end{equation}
Using decompostion of \(\tens{\nabla v}\)
\begin{equation*}
\tens{\nabla v} = \text{sym}\tens{\nabla v} + \text{skew}\tens{\nabla v}
\end{equation*}
and symmetry condition on \(\tens{\sigma}\text{,}\) the following result is obtained
\begin{equation*}
\tens{\sigma} : \tens{\nabla v} = \tens{\sigma} : \text{sym}\tens{\nabla v}\,.
\end{equation*}
Finally the following expression of the integral form of the indefinite equations of equilibrium
(2.3.10) can be formulated:
\begin{equation}
\int_{\partial\body} \vec{t} \cdot \vec{v}\,ds + \int_{\body} \vec{b} \cdot \vec{v} \,dv = \int_{\body} \tens{\sigma} : \text{sym}\tens{\nabla v}\,dv \,,\quad \forall\vec{v}\,.\tag{2.5.5}
\end{equation}