Insight 1.9.1. meaning of the components of the infinitesimal strain tensor.
In order to identify the meaning of the components of the tensor \(\tens{\varepsilon} \) it is better to start with the expression of tensor \(\tens{C}\) with respect to the gradient of the displacement, that is
\begin{equation*}
\tens{C} = \tens{I}+ \tens{\nabla u} + \transp{\tens{\nabla u}} + \transp{\tens{\nabla u}}\,\tens{\nabla u}\,,
\end{equation*}
from which, making the calculations, for example with the following MATLAB® instructions
$ syms u1_X1 u1_X2 u1_X3 u2_X1 u2_X2 u2_X3 u3_X1 u3_X2 u3_X3
Du = [u1_X1 u1_X2 u1_X3;u2_X1 u2_X2 u2_X3; u3_X1 u3_X2 u3_X3]
C = diag([1 1 1]) + Du + transpose(Du) + transpose(Du)*Du
C(1,1)
C(1,2)
the expressions of a component on the main diagonal and one outside can be obtained, i.e.
\begin{align*}
C_{11} \amp = \left( 1 + \frac{\partial u_1}{\partial X_1} \right)^2 + \left(\frac{\partial u_2}{\partial X_1}\right)^2 + \left(\frac{\partial u_3}{\partial X_1}\right)^2\,,\\
C_{12} \amp = \frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} + \frac{\partial u_1}{\partial X_1}\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1}\frac{\partial u_2}{\partial X_2} + \frac{\partial u_3}{\partial X_1}\frac{\partial u_3}{\partial X_2} \,.
\end{align*}
For the diagonal component, using the (1.8.4) result obtained for the \(\tens{C}\) diagonal component, it is possible to write
\begin{equation*}
\func{\lambda}{\vec{e}_1}^2 = \left( 1 + \underbrace{\frac{\partial u_1}{\partial X_1}}_{\varepsilon_{11}} \right)^2 + \underbrace{\left(\frac{\partial u_2}{\partial X_1}\right)^2 + \left(\frac{\partial u_3}{\partial X_1}\right)^2}_{\text{negligible in infinitesimal case}}\,.
\end{equation*}
From which
\begin{equation}
\varepsilon_{11} \approx \func{\lambda}{\vec{e}_1} - 1\,.\tag{1.9.9}
\end{equation}
A similar result is valid for the other components of \(\tens{\varepsilon}\) belonging to the main diagonal.
For the off-diagonal component, by using (1.8.6), it can be obtained
\begin{equation*}
\sin{\func{\gamma}{\vec{e}_1,\vec{e}_2}}\, \underbrace{\func{\lambda}{\vec{e}_1} \, \func{\lambda}{\vec{e}_2}}_{\approx 1} = \underbrace{\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1}}_{2\,\varepsilon_{12}} + \underbrace{\frac{\partial u_1}{\partial X_1}\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1}\frac{\partial u_2}{\partial X_2} + \frac{\partial u_3}{\partial X_1}\frac{\partial u_3}{\partial X_2}}_{\text{negligible in infinitesimal case}}\,,
\end{equation*}
and then
\begin{equation}
\varepsilon_{12} \approx \frac{1}{2}\, \sin{\func{\gamma}{\vec{e}_1,\vec{e}_2}} \approx \frac{1}{2}\, \func{\gamma}{\vec{e}_1,\vec{e}_2}\,.\tag{1.9.10}
\end{equation}

